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Abstract: Pyrido[2,3-b][1,4]oxazin-2-ones are conveniently
prepared in excellent yields by a one-pot annulation of
N-substituted-2-chloroacetamides with 2-halo-3-hydroxypyr-
idines with use of cesium carbonate in refluxing acetonitrile.
The key transformation features a Smiles rearrangement
of the initial O-alkylation product and subsequent cycliza-
tion.

The wide occurrence of benzo-fused and heterocycle-
fused [1,4]oxazines in bioactive natural products and
pharmaceuticals has made them important synthetic
targets.1 For the most part, synthetic routes to benzo-
[1,4]oxazines,2 pyrido[3,2-b][1,4]oxazines,3 and pyrimido-
[5,4-b][1,4]oxazines4 are well established.5,6 In contrast,
pyrido[2,3-b][1,4]oxazines have received scant attention.7
As part of our continuing interest in the development of
economic syntheses of heterocyclic systems, we investi-
gated the utility of the Smiles rearrangement8 and report
herein its application to the synthesis of pyrido[2,3-b]-
[1,4]oxazin-2-ones using readily available, stable precur-
sors.

Typically, benzo[1,4]oxazines and pyrido[3,2-b][1,4]-
oxazines are made by the direct cyclization of 2-haloacetyl
halides or alkyl 2-halopropionates with 2-aminophenol

or 2-amino-3-hydroxypyridine. A similar approach, how-
ever, is not directly applicable to the pyrido[2,3-b][1,4]-
oxazine ring system. On the other hand, it was felt that
the Smiles rearrangement could be exploited to circum-
vent this limitation. Since the Smiles rearrangement
necessitates an electron-deficient center to proceed at a
reasonable rate, we selected 2-haloacetamide and 2-halo-
3-hydroxypyridine as the reaction partners.

In exploratory experiments, reaction of 2-bromo-3-
hydroxypyridine (2a) with N-benzyl-2-chloroacetamide
(1a) in the presence of potassium carbonate furnished
N-benzyl-2-(2-bromopyridin-3-yloxy)acetamide (3a) as the
major product and bicyclic adduct 4a as only a minor
product (Scheme 1). Subsequent exposure of 3a to cesium
carbonate induced cyclization and gave 4a quantitatively.
Spectral and physical comparisons (IR, 1D/2D-NMR,
NOE, mp) of 4a cogently demonstrated it was different
from 4-benzyl-4H-pyrido[3,2-b][1,4]oxazin-3-one (5), pre-
pared from commercial 2H-pyrido[3,2-b][1.4]oxazin-3-one
and benzyl chloride with potassium carbonate. X-ray
analysis unambiguously confirmed the structure of 4a
as 1-benzyl-1H-pyrido[2,3-b][1,4]oxazin-2-one.

The overall annulation is best explained by a three-
step process (Scheme 2). Alkylation of 1 by 2 generates
adduct 3, which can be observed by TLC monitoring. Rate
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determining Smiles rearrangement then sets the stage
for a rapid ring closure giving rise to 1-substituted-
pyrido[2,3-b][1,4]oxazin-2-one 4.

To study this reaction in more detail, we systematically
investigated the reaction parameters using 1a and 2
(Table 1). The common alkali carbonates Li2CO3, Na2-
CO3, and K2CO3 (entries 1-3, respectively) generated a
trace or very little of 4a even after prolonged heating in
refluxing acetonitrile; strontium and silver carbonate
(entries 6 and 7) proved disappointing as well. In sharp
contrast, cesium and rubidium carbonate afforded 4a in
excellent yields (entries 4 and 5) after just 3 h in refluxing
acetonitrile.

Polar, aprotic solvents such as N,N-dimethylformamide
and acetonitrile were quite effective (Table 2: entries 1

and 4), whereas a protic solvent, ethanol (Entry 2), and
the nonpolar solvents toluene and dichloromethane were
ineffective (entries 5 and 6). THF (entry 3) fell between
the two extremes. Consequently, all following Smiles

SCHEME 1

SCHEME 2 TABLE 1. Effect of Base on the Yield of 4a from 1a and
2 in Refluxing Acetonitrile

entry base time 4a yield (%)a

1 Li2CO3 7 days trace
2 Na2CO3 7 days 40
3 K2CO3 7 days 48
4 Rb2CO3 3 h 93
5 Cs2CO3 3 h 97
6 SrCO3 7 days 0
7 Ag2CO3 48 h 0

a Isolated yield.

TABLE 2. Effect of Solvent on the Yield of 4a from 1a
and 2, Using Cesium Carbonate

entry reaction conditions time (h) 4a yield (%)a

1 CH3CN, reflux 3 97
2 CH3CH2OH, reflux 3 0
3 THF, reflux 3 60
4 DMF, 90-100 °C 1 96
5 toluene, reflux 3 5
6 CH2Cl2, reflux 3 0

a Isolated yield.
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rearrangements/annulations were conducted with cesium
carbonate in refluxing acetonitrile.

A variety of pyrido[2,3-b][1,4]oxazin-2-ones 4 were
synthesized with two related protocols (Table 3). Method
A involved direct cyclization of 1 with 2 in the presence
of cesium carbonate in refluxing acetonitrile without
isolation of 3. In Method B (Method A), intermediate 3
was preformed and then converted to 4 under the
standard conditions. Yields were excellent, ranging from
87 to 97%, even for acetamides with bulky N-substituents
(entries 5, 6, 15, 16, and 17). Cyclizations of 3d and 3n
yielded 4d and 4n as mixtures of diastereomers since the
precursor N-substituted R-methylacetamides were dis-
ateromeric by virtue of two different chiral centers. The
diastereomeric mixture 4n could be separated into its
(S,S)-isomer (4n-a, 47%) and (S,R)-isomer (4n-b, 45%)
by column chromatography. The absolute configurations
of 4n-a and 4n-b were established by using the proton
coupling constants of C2-H and N4-CR-H. The dias-

tereoisomers of 4d could not be separated by SiO2 column
chromatography.

Notably, cyclization of bromophenol instead of 3-hy-
droxy-2-chloropyridine with N-substituted chloroaceta-
mides under the same conditions did not form the
corresponding benzo[1,4]oxazin-3-ones.

In conclusion, we have developed an operationally
simple and economic synthesis of pyrido[2,3-b][1.4]oxazin-
2-ones based on the Smiles rearrangement. Its applica-
tion in the synthesis of natural compounds is underway
in our laboratory and will be reported in due course.
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TABLE 3. Preparation of 4 from 1 and 2

a Method A: 1 + 2 f 4. Method B: 1 + 2 f 3 f 4. b Isolated yield. c Yield of diastereomers: (S,S)-isomer (47%) and (S,R)-isomer
(45%).
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